
 The Storage Resource Manager Interface Specification
Version 2.1

This version prepared by:

Junmin Gu, Alex Sim, Arie Shoshani
LBNL

THIS IS A WORK IN PROGRESS DRAFT

It reflects decisions discussed in
http://sdm.lbl.gov/srm/documents/joint.docs/SRM.v2.1.joint.func.design.doc

Introduction

This document contains the interface specification of SRM 2.1. It incorporates the
functionality of SRM 2.0 (see “srm.methods.v2.0.rev2.doc” posted at
http://sdm.lbl.gov/srm), but is much expanded to include additional functionality,
especially in the area of dynamic storage space reservation and directory functionality in
client-acquired storage spaces.

This document reflects the discussions and conclusions of a 2-day meeting whose
purpose was to further define the functionality and standardize the interface of Storage
Resource Managers (SRMs) – a Grid middleware component. The meeting took place at
CERN on December 4-5, 2002. This document is a follow up to the basic SRM design
consideration document that describes the basic functionality of SRM Version 2.0 (see
“SRM.v2.0.joint.func.design.rev2.doc” posted at http://sdm.lbl.gov/srm). The
participants at the meeting are listed below.

Participants:

EDG-WP2: Peter Kunszt, Heinz Stockinger, Kurt Stockinger, Erwin Laure
EDG-WP5: Jean-Philippe Baud, Stefano Occhetti, Jens Jensen, Emil Knezo, owen synge
JLAB: Bryan Hess, Andy Kowalski
FermiLab: Don Petravick, Timur Perelmutov
LBNL: Arie Shoshani, Alex Sim
Other contributors not at the meeting: Chip Watson (Jlab), Rich Wellner (FermiLab),
Junmin Gu (LBNL)

The document is organized in four sections. The first, called “Defined Structures”
contain all the type definitions used to define the functions (or methods). The next 3
sections contain the specification of “Space Management Functions”, “Directory
Functions”, and “Data Transfer Functions”. All the “Space Management Functions”,
“Directory Functions” are newly added functions, and “Data Transfer Functions” are
slightly modified versions of the SRM V2.0 specification.

It is advisable to read the document SRM.v2.1.joint.func.design.doc posted at
http://sdm.lbl.gov/srm before reading this specification, since the reasoning for the
decisions reflected in this specification are described there in detail.

Namespace SRM:

Notation: underlined attributes are required.

Defined Structures:

enum TSpaceType {Volatile, Durable, Permanent}
enum TFileType {Volatile, Durable, Permanent}

enum TPermissionType {R,W,X}
enum TRequestType {GET, PUT, COPY}

enum TStatusCodeGet {Queued, Processing, Error, Released,

 Suspended, Aborted,
 Pinned, WaitToBePinned}

enum TStatusCodePut {Queued, Processing, Error,
 Suspended, Aborted,
 SpaceAllocated, PutDone,

 Pinned, WaitToBePinned, Released}
enum TStatusCodeCopy {Queued, Processing, Error

 Suspended, Aborted,
 CopyDone, Released}

typedef string TRequestToken
typedef string TReason
typedef string TUserID

typedef unsigned long TSizeInMB

Typedef struct {TPermissionType owner,
 TPermissionType group,
 TPermissionType world} TPermission

typedef struct {int year,
 int month, // 1-12
 int day, // 1-31
 int hour, // 0-23
 int minute, // 0-59
 int second // 0-59} TGMTTime

typedef struct {int day,

int hour,
int minute} TTimeDuration

typedef struct {boolean isDir,
 string name,
 TSizeInMB size,
 TPermissionType yourPermission,
 TGMTTime createdAtTime,
 string owner,

string fromURL // if path is a file
} TMetaDataPathDetail

typedef struct {TSpaceType typeOfThisSpace,

string owner,
 TSizeInMB totalSizeOfThisSpace,
 TSizeInMB sizeOfUnusedSpace,
 TSizeInMB sizeOfUsedSpace,
 TTimeDuration durationAssigned,
 TTimeDuration durationLeft} TMetaDataSpace

typedef struct {TFileType typeOfThisFile,
 TSpaceType typeOfSpace,
 string owner,
 TSizeInMB sizeOfThisFile,
 TTimeDuration durationAssigned,
 TTimeDuration durationLeft} TMetaDataFile

typedef string TStorageSystemID
typedef string TStorageSystemAuth
typedef string TSURL // site URL
typedef string TTURL // transfer URL

typedef struct {TStorageSystemID storageSystemID,
 TStorageSystemAuth encryptedAuthInfo} TStorageSystemInfo

typedef struct {TStorageSystemInfo storageSystemIDandAuth,
 TSURL SURLOrStFN} TAccess

typedef struct {TAccess SURLInfo
 TAccess stFNInfo
 string globalFileName
 TTimeDuration lifetime // pin time
 TFileType fileType
 TSizeInMB knownSizeOfThisFile,

TSizeInMB maxFileLength} TFileRequest

typedef struct {TAccess fromSURLInfo
 TAccess toSURLInfo
 string globalFileName
 TTimeDuration lifetime // pin time
 TFileType fileType
 TSizeInMB knownSizeOfThisFile,

TSizeInMB maxFileLength} TCopyFileRequest

typedef struct {TStatusCodeGet getStatus,
 TStatusCodePut putStatus,
 TStatusCodeCopy copyStatus} TStatusCode

typedef struct {TStatusCode status,
 string explanation} TStatus

typedef struct {TSURL siteURL,
 TStatus status,
 TTimeDuration estimatedWaittingTimeOnQueue,

TTimeDuration estimatedProcessingTime,
TTURL transferURLFromSRM
TTimeDuration remainingPinTimeIfAny} TFileStatus

typedef struct {TRequestToken requestToken,
 TRequestType requestType,
 int totalFilesInThisRequest,
 int numOfQueuedRequests,
 int numOfFinishedRequests,
 int numOfProgressingRequests,
 Boolean isSuspened} TRequestSummary

notes:

• UserID is not needed when we use gsi.
• StorageSystemID is a string that contains the login and password required by the

storage system. For example, it might have the form of login:pwd@hostname,
where “:” is a reserved separator between login and pwd. If hostname is not
provided, it is defaulted to what’s in the accompanying site URL or the host of
SRM.

• StorageSystemAuth is an encrypted string that is required by the storage system.
• TMetaDataSpace can refer to a single space of each type (i.e. volatile, durable,

permanent). It does not include the extra space needed to hold the directory
structures.

• Regarding files in Volatile space: Any file in Volatile space is owned by the SRM,
but the requester(s) have read permission to it. If another user requests this file,
he needs to provide a source siteURL so SRM can check from the source site

whether the user has a read/write permission. If permission is granted, then the
SRM updates its permission list to include this caller and returns the file in
Volatile space instead getting the file from the source site.

• GlobalFileName is not a required attribute.
• The type definition SURL above is used for both site URL and the “Storage File

Name” (stFN). This was done in order to simplify the notation. Recall that stFN
is the file path/name of the intended storage location when a file is put (or copied)
into an SRM controlled space. Thus, a stFN can be thought of a special case of
an SURL, where the protocol is assumed to be “srm” and the machine:port is
assumed to be local to the SRM. For example, when the request srmCopy is
made, the source file is specified by a site URL, and the target location can be
optionally specified as a stFN. By considering the stFN a special case of an
SURL, an srmCopy takes SURLs as both the source and target parameters.

• The requestToken assigned by SRM is unique and immutable (non-reusable). For
example, if the date:time is part of the requestToken it will be immutable.

Function specification:

Space Management Functions:

summary:
 srmReserveSpace
 srmReleaseSpace
 srmUpdateSpace(includes size and time)

srmCompactSpace:
srmGetCurrentSpace:

srmGetFilesMetaData:
srmGetSpaceMetaData:

srmChangeFileType:

details:
srmReserveSpace:
 In: TUserID userID,

TSpaceType typeOfSpaceToReserve,
TSizeInMB sizeOfSpaceToReserve,
TTimeDuration lifetimeOfSpaceToReserve,
TStorageSystemInfo storageSystemInfo

 Out: TSpaceType typeOfReservedSpace,
TSizeInMB sizeOfReservedSpace,
TTimeDuration lifetimeOfReservedSpace,

TReason possibleExplanation,
Boolean isSpaceReserved

 notes:
• lifetimeOfSpaceToReserve is not needed if requesting permanent space.
• SRM can provide default size and duration if not supplied.
• storageSystemInfo is optional in case storage system requires additional security

check.
• If isSpaceReserved=false, it means SRM refuses the request, and all the other

parameters should be null, except possibleExplanation.

srmReleaseSpace:
 In: TUserID userID,

TSpaceType typeOfSpace,
 Boolean forceFileRelease

 Out: Boolean releaseIsSuccesful,
 TReason possibleExplanation

notes:

• A request to release a non-reserved space (e.g. non-exist, or already released
space) will return true.

• forceFileRelease=false is default. This means that the space will not be released
if it has files that are still pinned in the space. To release the space regardless of
the files it contains and their status forceFileRelease=true must be specified.

• To be safe, a request to release a reserved space that has an on-going file transfer
will return false, even forceFileRelease= true.

• When space is releasable and forceFileRelease=true, all the files in the space are
released, even in durable or permanent space.

• It is up to each SRM whether a released space will result in removing all its
files/directories immediately. One possibility is to keep files/directories in volatile
space when the Durable or Permanent spaces are released.

srmUpdateSpace(includes size and time)
 In: TUserID userID,

TSpaceType designatedSpaceType,
 TSizeInMB newSize,
 TTimeDuration newDurationFromCallingTime

 Out: TSizeInMB actualSizeGranted,
 TTimeDuration actualDurationGranted,
 TReason possibleExplanation
notes:

• If neither size or duration are supplied in the input, then return will be null.
• newSize is the new actual size of the space, so has to be positive.

• newDurationFromCallingTime is the new lifetime requested regardless of the
previous lifetime, and has to be positive. It might even be shorter than the
remaining lifetime at the time of the call.

srmCompactSpace:
 In: TUserID userID,

TSpaceType typeOfSpace,
 Boolean doDynamicCompactFromNowOn

Out: TSizeInMB newSizeOfThisSpace
notes:

• This function is called to reclaim the space for all released files and update space
size in Durable and Permanent spaces. Files not released are not going to be
removed (even if lifetime expired.) Directory structure will stay intact.

• doDynamicCompactFromNowOn=false by default, which implies that only a one
time compactSpace will take place.

• If doDynamicCompactFromNowOn=true, then the space of released files will be
automatically compacted until the value of doDynamicCompactFromNowOn is
set to false.

• When space is compacted, the files in that space do not have to be removed by the
SRM. For example, the SRM can choose to move them to volatile space. The
client will only perceive that the compacted space is now available to them.

• To physically force a removal of a file, the client should use srmRm.

srmGetFilesMetaData:
 In: TUserID userID,

String[] arrayOfPath,
 TSpaceType spaceType,
 String[] arrayOfGlobalFileName

 Out: TMetaDataFile[] fileDetails

notes:

• The path can be specified as ~user/relative_path where ~user can be omitted if
caller is referring to self. Like unix, one user needs access permission granted by
the owner of the file/space to look into another user’s directory.

• If the path is null, then return fileDetails on all the files in the space.
• spaceType is needed to determine which space to look into, because the file path

is relative to each space type.

srmGetSpaceMetaData:
 In: TUserID userID,

TSpaceType[] arrayOfTypeOfSpace

 Out: TMetaDataSpace[] arrayOfSpaceDetails
notes:

• If no typeOfSpace is given, return ALL caller spaces under each of the types.

srmChangeFileType:
 In: TUserID userID,

string[] arrayOfPath/filename,
 String[] arrayOfGlobalFileName,

TSpaceType typeOfSpace,
 TFileType desiredType

 Out: Boolean changeIsSuccessful
notes:

• Either path or globalFileName must be supplied.
• If a path is pointing to a directory, then the effect is recursive for all the files in

this directory.
• Changing the file type is bound to the restriction of filetypes in spacetypes, e.g. a

Volatile file can not be changed to Permanent if it is not in a Permanent space.

Directory Functions:

summary:
srmMkdir:
srmRmdir: (applies to dir)
srmRm: (applies to file)
srmLs: (applies to both dir and file)
srmMv: (applies to both dir and file)
srmCp: (applies to both dir and file)
srmCd:
srmPwd:
srmReassignToUser:
srmAddPermission:

details:

srmMkdir:
 In: TUserID userID,

TSpaceType designedSpaceType,
 string currentDirectory,
 string newDirectoryPath,

 Out: Boolean dirCreatedSuccessfully
notes:

• The topDirectory can be omitted if referring to the user’s top directory.
• Consistent with unix, recursive creation of directories is not supported.
• newDiretoryPath can include paths, as long as all sub directories exist.

srmRmdir: (applies to dir)
 In: TUserID userID,

string dirToBeDeleted,
 TSpaceType spaceType,
 boolean doRecursiveRemove

 Out: Boolean pathDeletedSuccessfully
notes:

• doRecursiveRemove is false by default.
• To distinguish from srmRm(), this function is for directories only.

srmRm: (applies to files)
 In: TUserID userID,

string[] arrayOfFilePathsToBeDeleted,
 TSpaceType spaceType

 Out: Boolean[] arrayOfDeletedSuccessfully
notes:

• To distinguish from srmRmDir(), this function applies to files only.

srmLs: (applies to both dir and file)
 In: TUserID userID,

string pathToBeListed,
 TSpaceType spaceType,
 boolean fullDetailedList,

boolean oneLevelRecursive

 Out: TMetaDataPathDetail[] details
notes:

• doFullDetailedList=false by default.
• If doFullDetailedList=true provide full details similar to unix “ls –l”.
• If oneLevelRecursive=true then file lists of one level below current will be

provided as well.

srmMv: (applies to both dir and file)
 In: TUserID userID,

string pathToBeMovedFrom,
 string pathToBeMovedTo,
 TSpaceType spaceTypeOfFromPath,

TSpaceType spaceTypeOfToPath

Out: Boolean moveIsSuccessful
notes:

• Space allocation and de-allocation may be involved if moving from one type of
space to another.

• Both paths here are assumed to be owned by the same user.

srmCp: (applies to both dir and file)
 In: TUserID toUserID,

string pathToBeCopiedTo,
TSpaceType spaceTypeOfToPath,
TUserID fromUserID,
string pathToBeCopiedFrom,
TSpaceType spaceTypeOfFromPath,
Boolean copyRecursively // default = false

Out: Boolean copyIsSuccessful
notes:

• The toUserID must be the ID of the user making the srmCp call.
• The fromUserID can be the ID of either the user making the srmCp call or

another user.
• Space allocation may be involved at the destination side.
• Permission checking is required if different users are involved.

srmCd:
 In: TUserID userID,

string pathToBeChangedTo

Out: Boolean cdIsSuccessful

srmPwd:

In: TUserID userID

Out: String currentPath

srmAddPermission: (applies to both dir and file)
 In: TUserID userID,

string pathTargeted,
 TSpaceType spaceTypeOfFromPath,

TPermission newPermission,
String anotherUser

Out: Boolean addPermissionIsSuccessful
notes:

• If anotherUser = “world”, it means world permission.

• AnotherUser depends on the security model of the SRM. For example, If gsi is
used, the “distinguished name” may be used.

srmReassignToUser:
 In: TUserID userID,

string assignedUser,
 TTimeDuration lifeTimeOfThisAssignment,
 String designatedPathFromOwner // file or dir,
 TSpaceType designatedSpaceTypeFromOwner

 Out: Boolean acknowledged
notes:

• This function implies actual lifetime of file/space involved is extended up to the
lifeTimeOfThisAssignment.

• The caller must be the owner of the files to be reassigned.
• permission is omitted because it has to be READ permission.
• lifeTimeOfThisAssignment is relative to the calling time. So it must be positive.
• After lifeTimeOfThisAssignment time period, or when assignedUser obtained a

copy of files through srmCp(), the files involved are released and space is
compacted automatically, which ever is first.

• If the path here is a directory, then all the files under it are included recursively.
• If there are any files involved that are released before this function call, then

these files will not be involved in reassignment.
• If a compact() is called before this function is complete, then this function has

priority over compact(). Compact will be done automatically as soon as files are
copies to the assignedUser. Whether to dynamically compact or not is an
implementation choice.

Data Transfer Functions:

summary:

srmPrepareToGet:
srmPrepareToPut:
srmCopy:

srmReleaseFiles: (dir is ok. Will release recursively for dirs)
srmPutDone:

srmAbortRequest:
srmAbortFiles:
srmSuspendRequest:
srmResumeRequest:

srmGetRequestStatus:
srmGetFilesStatus:
srmGetRequestSummary:

srmExtendFileLifeTime:
srmGetRequestID:

srmCheckInLocalCache:

details:

srmPrepareToGet:
 In: TUserID userID,

TFileRequest[] arrayOfFileReuqest,
 string[] arrayOfProtocols,
 string callbackReference,
 string userRequestDescription,
 TSpaceType designatedSpace

 Out: TRequestToken requestToken,
 TFileRequestStatus[] arrayOfFileStatus
notes:

• If callbackReference is provided then callback will be performed.
• Only pull mode is supported.
• SRM rejects the file request if stFN (in the TFileRequest) is not local.
• If stFN is not specified, SRM will generate a name automatically and put it in the

specified user space. This will be returned as part of the “transfer URL”.
• SRM assigns the requestToken at this time.
• Normally this call will be followed by srmRelease().

srmPrepareToPut:
 In: TUserID userID,

TFileRequest[] arrayOfFileRequest,
 string[] arrayOfProtocols,

string callbackReference,
string userRequestDescription,

 TSpaceType designatedSpace

 Out: TRequestToken requestToken,
 TFileRequestStatus[] arrayOfFileStatus
notes:

• If callbackReference is provided then callback will be performed.
• Only push mode is supported for srmPrepareToPut.
• StFN (in the TfileRequest) has to be local. If stFN is not specified, SRM will name

it automatically and put it in the specified user space. This will be returned as
part of the “transfer URL”.

• srmPutDone() is expected after each file is “put” into the allocated space.

• The lifetime of the file starts as soon as SRM get the srmPutDone(). If
srmPutDone() is not provided then the files in that space are subject to removal
when the space lifetime expires.

srmCopy:
 In: TUserID userID,

TCopyFileRequest[] arrayOfFileReuqest,
 string callbackReference,
 string userRequestDescription,
 TSpaceType designatedSpace,
 Boolean releaseSourceFiles (default = false)

 Out: TRequestToken requestToken,
 TFileRequestStatus[] arrayOfFileStatus
notes:

• If callbackReference is provided then callback will be performed.
• Pull mode: copy from remote location to SRM. (e.g. from remote to MSS.)
• Push mode: copy from SRM to remote location.
• When releaseSourceFiles=true, then SRM will release the source files on behalf

of the caller after copy is done.
• In pull mode, send srmRelease() to remote location when transfer is done.
• If in push mode, then after transfer is done, notify the caller. User can then

release the file. If user releases a file being copied to another location before it is
done, then refuse to release.

srmReleaseFiles:
 In: TRequestToken requestToken,
 TUserID userID,
 TSURL[] siteURLs

 Out: Boolean[] arrayOfReleaseStatus
notes:

• If requestToken is not provided, then the SRM will release all the files specified
by the siteURLs owned by this user, regardless of the requestToken.

• If requestToken is not provided, then userID is needed. It may be inferred or
provide in the call.

• Releasing files will be followed by compacting space, if
doDynamicCompactFromNowOn was set to true in a previous srmCompactSpace
call.

srmPutDone:
 In: TRequestToken requestToken,
 TSURL[] arrayOfSiteURL

 Out: //none
notes:

• Called by user after srmPut()

srmAbortRequest:
 In: TRequestToken requestToken

 Out: Boolean terminated
notes:

• Terminate all file requests in this request regardless of the state. Expired files are
released.

srmAbortFiles
 In: TRequestToken requestToken,
 TSURL[] arrayOfSiteURLs

 Out: Boolean[] terminated

TReason possibleExplanation
notes:

• If no siteURLs are given, return terminated=false.
• If siteURL does not exist, return terminated=false.
• PossibleExplanation should be used for the reason of terminated=false.

srmSuspendRequest:

In: TRequestToken requestToken

 Out: Boolean suspended
notes:

• Return false if request was completed.

srmResumeRequest:

In: TRequestToken requestToken

 Out: Boolean resumed
notes:

• Return false if request was completed.

srmGetRequestStatus:
 In: TRequestToken requestToken

 Out: TFileRequestStatus[] arrayOfFileStatus
notes:

• Returns status for all the file requests in this request.

srmGetFilesStatus:

 In: TRequestToken requestToken,

 TSURLOrStFN[] arrayOfSURLOrStFNs

 Out: TFileRequestStatus[] arrayOfFileStatus
notes:

• For put requests, the target stFNs are checked, otherwise, source SURLs are
checked.

srmGetRequestSummary:
 In: TRequestToken[] arrayOfRequestToken

 Out: TRequestSummary[] arrayOfRequestSummary

srmExtendFileLifeTime:
 In: TRequestToken requestToken,
 TSURL siteURL,
 TTimeDuration newLifeTimeRequestedFromCallingTime

 Out: Boolean isExtened.
 TTimeDuration newTimeExtended
notes:

• newLifeTime is relative to the calling time. Lifetime will be set from the calling
time for the specified period.

• The number of lifetime extensions maybe limited by SRM according to its policies.
• IsExtended = false if SRM refuse to do it. (set newTimeExtended = 0 in this case.)
• If original lifetime is longer than the requested one, then the requested one will be

assigned.
• If newLifeTime is not specified, the SRM can use its default to assign the

newLifeTime.

srmGetRequestID:
 In: string userRequestDescription

 Out: TRequestToken[] arrayOfPossibleRequestToken
notes:

• If userRequestDescription is null, returns null.

srmCheckInLocalCache:
 In: TSURL[] arrayOfSiteURL

 Out: Boolean[] arrayOfSiteURLIsInCache
notes:

• spaceType is not specified here. It is up to SRM to decide whether to respond with
one or more of Volatile/Durable/Permanent spaces.

• We assume caller has permission for the files in question.

